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Abstract

We describe a general method for the automated symbolic processing of Bloch-Redfield-Wangsness relaxation theory equations for
liquid-phase spin dynamics in the algebraically challenging case of rotationally modulated interactions. The processing typically takes no
more than a few seconds (on a contemporary single-processor workstation) and yields relaxation rate expressions that are completely
general with respect to the spectral density functions, relative orientations, and magnitudes of the interaction tensors, with all cross-cor-
relations accounted for. The algorithm easily deals with fully rhombic interaction tensors, and is able, with little if any modification, to
treat a large variety of the relaxation mechanisms encountered in NMR, EPR, and spin dynamics in general.
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1. Introduction

The relaxation of a perturbed spin system to thermal
equilibrium is ubiquitous in all forms of magnetic
resonance spectroscopy [1]. In part responsible for the very
existence of NMR and EPR signals, relaxation yields
valuable structural information on inter-particle distances
(from dipolar relaxation [1-3]), relative orientations and
angles (from cross-correlated relaxation [4-6]), and order
parameters and motional correlation times (from the
magnetic field dependence of relaxation rates [7]).

Most practical techniques for the analysis of spin relax-
ation data rely on a compact and elegant general treatment
known as the Bloch-Redfield-Wangsness (BRW) theory,
which is based on second-order time-dependent perturba-
tion theory [8-11]. Although it works very well in most
cases of practical importance, the intermediate algebraic
expressions can be bulky. As density matrix dimensions
scale exponentially with the number of spins and each
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anisotropic interaction adds another set of directional
functions, the formulae quickly become inconveniently
cumbersome [12-14].

With the spectacular advances in symbolic processing
software in recent years, in particular Mathematica [15],
it is only a matter of time before the tedious inner workings
of the analytical BRW theory are relegated to computers.
This, however, is not a trivial task, and we share in this
communication our experience in setting up such a system.
The algorithm occupies only a page of code, but easily
deals with the relaxation analysis of a large variety of sys-
tems—from simple dipole-dipole/chemical shift anisotropy
cross-correlations to zero-field-splitting-induced relaxation
of high-spin electron shells, and beyond, providing an
extension to current programs [16,17], which have so far
used hand-coded relaxation superoperators. In the
approach described here, the underlying idea is to identify
and supply the symbolic engine with the bare minimum of
information to ensure successful processing, at the same
time avoiding irrelevant attempts to simplify and transform
intermediate results. Although we provide specific exam-
ples and (Mathematica-based [15]) implementations, we
have chosen to focus here on the general strategy rather



L Kuprov et al. | Journal of Magnetic Resonance 184 (2007) 196-206 197

than on details of coding and usage, since the latter may
vary from one programming environment to another.

2. Equations of BRW theory

The ‘master equation’ for the evolution of the density
operator of BRW theory has the following form:
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(See the recent review by Goldman [9] and references there-
in for a detailed derivation and analysis of the required
assumptions.) In this equation, the spin Hamiltonian is
separated into the static part A, and the dynamic part
H, (¢), such that

H(t)=Ho+H\(1), H())=0, |H ()| < |H, (2)

where the overbar denotes an ensemble average (or a
temporal average, if we accept the ergodic hypothesis). K !
are the static basis operators in an expansion of the time-
dependent part of the Hamiltonian

(1) =3 10K 3)

and g,,(t) are the correlation functions of the scalar
stationary stochastic processes f,,(¢) in this expansion

@t +7) = £2(0)f5(0) = & (7)- (4)

One can use p(¢) — p* in the first commutator in Eq. (1)
because p®, the equilibrium density operator, commutes
with H,.

Eq. (1) is a system of first order ordinary differential
equations in time ¢ for the elements of the density matrix.
After the integral over t has been evaluated, the final
density matrix evolution equations have the following form
[10]
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in which H is the commutation superoperator correspond-

ing to Hy, and R is referred to as the relaxation superoper-
ator. The optional last step in the derivation is to translate
this system of equations into expressions for the physical
observables using a suitable complete orthogonal operator
basis set. The choice of the basis is a matter of convenience,
but there are a few that are particularly useful [18]. Taking
the trace with the chosen operator basis gives a final system
of equations for the evolution of the corresponding full
system of observables A;

Sy = Y k(44 — ). (©

It is the matrix of coefficients k;; in which we are interested.
The elements of this matrix have first-order unitary contri-
butions, arising from the relatively simple first term on the
right hand side of Eq. (1). The non-unitary second-order
contributions, which describe the relaxation, are bulky
and benefit from automated symbolic processing.

3. Symbolic processing: strategy

Known spin relaxation mechanisms may be loosely
divided into those caused by the stochastic modulation of
scalar interactions (e.g., Fermi contact, J-coupling and
exchange) or scalar multipliers of anisotropic interactions
(e.g., distance-modulated dipolar), and the more mathe-
matically demanding case of stochastic rotational modula-
tion of anisotropic interactions. Algebraic complexity is a
distinctive feature of the latter case, on which we therefore
chose to concentrate in this communication.

It might appear that, since the integral in Eq. (1) is a lin-
ear superoperator independent of the density matrix on
which it acts, simply typing it into e.g., Mathematica and
requesting evaluation would be sufficient. This is not the
case, chiefly because the explicit expressions for the corre-
lation functions in Eq. (4) are in general unknown. Fur-
thermore, the integral in Eq. (1) is a one-sided
superoperator-valued Fourier transform of those correla-
tion functions. Even if, sacrificing generality, we choose
to assume a particular symbolic expression for g,,.(7), a
brute-force symbolic Fourier transform would be unac-
ceptably time-consuming.

We outline below what we believe to be the optimal
strategy for the symbolic processing of the relaxation theo-
ry equations, combining both speed and applicability to a
broad range of relaxation-inducing interactions. Steps 1
and 2 are concerned with the preparation of the Hamilto-
nian, which may vary from one spin system to another,
and generally follow the irreducible spherical tensor for-
malism pioneered by Freed [19,20] and Sanctuary [21-
25]. Steps 3 and 4 then detail the automated BRW theory
processing steps.

An approximation frequently made when formulating
the relaxation superoperator is to neglect all elements Ry,
that correspond to non-zero energy differences w;—wy; # 0,
since these may be shown to have a small long-term effect
on the evolution of the density matrix [10]. This “secular”
approximation is rather dangerous: it may distort numeri-
cal derivatives (encountered, e.g., in minimization algo-
rithms) and fail in systems with overlapping transitions.
We found that the symbolic processing software is suffi-
ciently powerful to skip this approximation and arrive at
the general expressions, which are valid for any system.

3.1. Step 1. Expressing the interaction Hamiltonian in
irreducible spherical tensor notation

A convenient general feature of the anisotropic parts of
spin interactions is that virtually all of them transform
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according to the /=2 irreducible representation of the
rotation group. Consequently, the rotational modulation
of these interactions may be treated in a very uniform and
general way using the irreducible spherical tensor operator
formalism [19-25].

For any traceless symmetric bilinear spin interaction
written in its eigenframe, the translation into the irreduc-
ible spherical tensor notation is given by

§ -A- i = GS)(Z/X + bSYZ]Y + CS'ZZ,Z
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where T »m are the second rank irreducible spherical tensor
operators [26,27]. The coefficients on the right hand side
are proportional to the rhombicity and axiality of the ten-
sor in question. Eq. (7) refers to the bilinear case (e.g.,
dipolar or anisotropic hyperfine interactions). In the case
of a linear interaction such as the Zeeman interaction,
one of the operator vectors is replaced by the external field
vector, and in the case of quadratic interactions (such as
zero-field splitting or the nuclear quadrupolar interaction),
the operator vectors on both sides of the interaction tensor
refer to the same spin. For the sake of completeness we will
also provide the reverse relations, which take the rank-2
irreducible spherical tensors back to the two-spin product
operator basis:

(7)

Tz,z = +%S+i+,
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Transformation (7) is the critical first step in preparation
for automated symbolic processing because the irreduc-
ible spherical tensors have well-defined rotation proper-
ties and correlation functions [12,27]. This enables their
manipulation and processing to be coded compactly later
in the algorithm. Another important aspect is that the
transformation in Eq. (7) only needs to be performed
once—it has the same functional form for the majority
of symmetric traceless interactions in spin dynamics.
From system to system only the operator definitions
(8) may need to change, simply because the spin quan-
tum numbers and therefore the matrix dimensions may
differ.

3.2. Step 2: Setting up rotations

After the eigenframe expressions for the interaction
Hamiltonians have been obtained (with variable, pre-mea-
sured or pre-computed eigenvalues), the tensors need to be
positioned in the molecular frame, and an overall molecu-
lar rotation has to be set up. The irreducible spherical

tensors of a given rank transform into each other under
any rotation [27] according to

IE(O{,ﬁ, T/m— z:Tlm’D
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In this expression R(oc, f,7) denotes a rotation with (possi-
bly time-dependent) Euler angles «, f5, y. The coefficients
Dfnl,).m(oc, p,v) are Wigner functions [26,27]. The three Euler
angles position the interaction tensor relative to the
molecular frame and describe any internal conformational
motion that might affect that tensor. After the rotation is
applied, Eq. (7) transforms into

2 2 3 b A
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For the purposes of BRW theory, the symbolic proces-
sor never needs explicit expressions for the Wigner func-
tions because they are replaced when Eq. (4) is applied.
The explicit definitions are sometimes useful at the very
last stage of the symbolic processing of cross-correlated
relaxation, where a few Wigner functions encoding the
relative orientation of the interaction tensors survive
and need to be translated into trigonometric functions
[27].

For multiple rotations, Eq. (9) is applied several times
sequentially. Each rotation generally has its own set of
(possibly time-dependent) Euler angles. The overall molec-
ular rotation is special in this respect: its Euler angles are
shared by all the interaction tensors in the system. In the
processing stage this automatically accounts for every
cross-correlation present in the system. The cross-correla-
tions are thus naturally accounted for without requiring
special treatment.

Because the orientations of the interaction tensors in the
molecular frame are usually treated as fixed, the associated
rotational functions are simply constants. Eq. (10) then
simplifies to

pos S A- Z Z T2m m
m=-—2 (11)
2C — (a —|— b) D(z)
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where kpos denotes a ‘positioning’ rotation which takes the
interaction from its eigenframe into the molecular frame;
the quantities @,,, are scalars which may be treated as con-
stants throughout the calculation. Not having to consider
them explicitly leads to a significant simplification at the
processing stage: the only property of the &,, that needs
to be declared is their behaviour under the complex conju-
gate operation

—-b
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As we shall see below, Egs. (7)—(12) allow any rotationally
induced relaxation treatment to be performed in full
generality with respect to the correlation functions/spectral
densities and the principal values and orientations of the
interaction tensors involved, including the case of aniso-
tropic rotational diffusion.

3.3. Step 3: Processing correlation functions using upvalues

The ensemble averaging performed in BRW theory,
together with the assumption that the molecular reorienta-
tion is a stationary stochastic process, leads to products of
differently timed Wigner functions being replaced by a
single function of their time separation 7—the motional
correlation functions g(t) [9]

Ok
= MOV (1) = 375 ()

(13)
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Here and below iDti%(t) denotes a Wigner function corre-
sponding to the overall molecular rotation. The normaliza-
tion on the right hand side of Eq. (13) is chosen to ensure
that the correlation function, as the name suggests, equals
unity at zero time separation. Except in very special cases
(e.g., with a strongly anisotropic rotational diffusion ten-
sor), most of the g4 (7) functions are zero and the overall
rotational motion can be adequately described by a single
correlation function.

Due to lack of concrete knowledge about g,.; (7) in the
ensemble in question, and also because Wigner functions
are rather bulky, the direct analytical evaluation of the left
hand side of Eq. (13) is not possible. Although Replace
type directives of the symbolic processing kernel could be
used to perform transformation (13), they fail in practice
(they rely on strict pattern matching and are easily defeated
by, for example, an unopened bracket or a minus sign). We
shall therefore proceed to use the more powerful concept of
upvalues [15], hereafter denoted by the =sign

! 0

W2 (VM) (0) 2 57 Lunea (2)- (14)
This upvalue is an instruction to the symbolic processing
kernel to do the following throughout the subsequent cal-
culations: to keep an eye on the occurrence of Wigner func-
tion products that match the left hand side of Eq. (14), and
on encountering a match to replace it with the right hand
side of (13). The variables with trailing underscores may
stand for anything and are simply carried over to the right
hand side. Note the profound difference between this upva-
lue statement and the explicit Replace command: while the
latter is only performed once, transformation (13) is per-
formed every time a suitable match is encountered by the
kernel. It is also important to have this rule set as an upva-
lue. If it were a plain assignment, it would have been asso-
ciated with the outermost object—a multiplication

operator—and checked every time that object is encoun-
tered [15]. This would result in a dramatic slow-down.
The upvalue, on the contrary, means that the rule is asso-
ciated with the second object from the top, the Wigner
functions, resulting in optimal performance [15].
Similarly, if two rotational motions are known to be
uncorrelated (e.g., when the interaction tensors belong to
different molecules or radicals), the upvalues for the corre-
lations may be explicitly set to zero
M, (R (1) =0,
N (1) 20.

0y
In summary, upvalues (14) and (15) encode those few
properties of Wigner functions that the symbolic process-
ing kernel has to be aware of in order to perform the cor-
relation function processing efficiently. This requires less
than a second in all the examples given below because
the explicit trigonometric expressions for the Wigner func-
tions are never used; instead the calculation is performed
exploiting the power and simplicity of on-the-fly pattern-
matching, which arguably corresponds to what a human
mind would have done if it had the required speed and
patience.

(15)

3.4. Step 4. Custom-building the BRW integrator

Once the correlation functions have been processed, the
products of Wigner functions corresponding to overall
rotation are replaced by the correlation functions g(z). A
superoperator-valued Fourier transform of these correla-
tion functions now remains. The integrand in the right
hand side of Eq. (1) is very uniform in structure, being a
combination of €'“’g(t) terms with different values or sym-
bols for w. Once again, due to lack of knowledge of the
functional form of g(t), a brute-force symbolic integration
fails. The problem can be mitigated to some extent by
assuming a particular functional expression for the correla-
tion function (e.g. Lipari-Szabo bi-exponentials [28]), but
any analytical evaluation of hundreds of Fourier trans-
forms is still very slow. A much improved solution at this
stage is not to rely on explicit integration, but rather to cre-
ate a dedicated integrator which is only aware of a specific
set of properties and is therefore very fast.

The basic property that any symbolic integrator ought
to have is linearity

Y(a_+b_):=7(a) +7(d), (16)
Y(ab_) :=aY(b) if acCVacP.
The symbol C denotes a set of complex numbers and P the
user-defined set of interaction parameters which do not
have an explicit numerical value during the calculation
(e.g., a variable tensor axiality—see Section 4 on how to
define such a set). A downvalue sign (:=) is used instead
of an upvalue because we want to associate the rule with
the integration operator itself rather than any particular
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integrand [15]. We can then proceed to define the integra-
tion rules for the typical expressions encountered during
the symbolic processing of Eq. (1)

T(e""g(1)) = J (o), (17)

where J(w) is a spectral density function. The fact that the
only rules specified for the integrator are (16) and (17)
makes it very efficient: the vast tables of other possible inte-
gration routes are not consulted. Once the symbolic inte-
gration is complete, a trivial simplification command is
sometimes required as the last stage to bring the equations
to a form that a human mind perceives as elegant.

4. Implementation examples

Because the processing of correlation functions is done
in full generality, the resulting relaxation rates also contain
imaginary contributions, called dynamic frequency shifts
(DFS), which originate from the fact that the imaginary
part of the Fourier transform (17) is in general small, but
non-zero [29]. Obtaining expressions for the DFS is even
more difficult than for the relaxation rates, because the
spectral density J(w) can no longer be assumed to be an
even function, and the signs of frequencies therefore need
to be controlled at every stage in the calculation. As we
shall see in the examples below, this is naturally achieved
in automated symbolic processing.

4.1. Example 1. Relaxation due to bilinear interaction anisotropy

The rotational modulation of an anisotropic pair-wise bilinear interaction (interelectron dipolar, electron-nuclear
hyperfine, internuclear dipolar, etc.) is often the dominant spin relaxation mechanism in a wide variety of systems. The
Hamiltonian typically comprises an isotropic Zeeman interaction and the bilinear interaction in question, which we
explicitly split into the isotropic part (which is sometimes absent and of which we will keep only the secular term'), and
the anisotropic part

[:[:(L)lzz-i-a)zSZ_Faizgz —‘riAg (18)

Splitting the Hamiltonian into H, (Zeeman and scalar coupling) and A, (anisotropic coupling), according to definition (2),
and converting H, to irreducible spherical tensors using Egs. (7)—(10) then yields:

Ho = 601[:2 + wzgz + af:zSL

N Rh
Hl(t Z szfintm/ 2

m'==2

Ax = 2477 — (Axx + Ayy)

2
Z TowM (1) (19)
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where iIRf,f)k(t) are Wigner functions corresponding to the overall molecular rotation and 75, are second rank irreducible
spherical tensors linking spins L and S, as defined in Eq. (8).

Transforming the Hamiltonian into the form shown in Eq. (19) finishes the manual preparation stage; all the rest is
handled by the symbolic processing software. We will now describe the essential steps of the implementation. The full
programs are given in the Supplementary Information. All notation, unless elaborated upon, is standard Mathematica
syntax described in the manual [15]. We chose to consider spin-1/2 particles here, but arbitrary spin particles may be
treated by replacing the Pauli matrices below with those appropriate for different spin quantum numbers.

We start by setting up the Kronecker (aka direct or outer) product, the commutation operation and the operator scalar

product [18]:

Kron[A_ ,B_]:=BlockMatrix[Outer[Times,A,Bl];
Comm[A ,B ]:= A.B-B.A;
Scal[A_,B ]:=Tr[A.ConjugateTranspose[B]];

The basic single-spin operators, the identity operator, the first rank irreducible spherical tensors and the two-spin
operators are then defined in a standard way [16,17]

! Non-secular terms of the isotropic coupling aL - S have been omitted from Eq. (18) for reasons of compactness: even though we can easily set up the
full non-secular problem here, the resulting relaxation rate expressions would contain non-elementary functions (e.g., sums over roots of high-order
polynomials) [30] and would not be readily comparable with literature results, which normally neglect the non-secular components of scalar couplings.
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L, =Kron[o,,Id]l; L, =Kron[o,Id]l; L, =Kron[o,Id]l; L, =L, +iLy; L =L, - :i.Ly
S, =Kron[Id,0,]; S, =Kronl[Id,o ]l; S, =Kronl[Id,c,]; S, =S, +iSy; S =8, —iSY

To set up the second rank irreducible spherical tensors, it is convenient to use the direct product expression [26,27],
which is more compact than the explicit definition via Eq. (8).

1 1
T2,q 1:=(-1)%\/5 Z z (ThreedSymbol[{1,ql},{1,q2},{2,-q}]Kron[T[1,q1],T[1,q92]]1);

gl=-1g2=-1

Since Mathematica assumes nothing about the variables of Hamiltonian (18), they have to be explicitly declared as being
real. The separate InteractionParameters list is created for this purpose to avoid overloading the global Assumptions var-
iable because of the associated performance impact. The membership of a particular variable in Parameters is then verified
by checking if it appears on the InteractionParameters list:

InteractionParameters = {0,, ®,, a, T, A%, Rh};

Parameters /: n_ € Parameters :=

With[{g = (Count[InteractionParameters,n]>0), q /; g ==True||q ==False]

Conjugate[A_ ] := A /; Ac Parameters

Conjugate[A_ B_] := Conjugate[A] Conjugate[Times[B]];

Conjugate[A_+B__ ] := Conjugate[A] + Conjugate[Plus[B]];

The third definition tells the kernel to assume all members of the InteractionParameters list to be real, and the last two
definitions state that the conjugation operation commutes with addition and multiplication. The double underscores mean
that the rule will be threaded over multiple sequential multiplications and additions.

We now proceed to implement the upvalues discussed in Step 3 and the BRW integrator discussed in Step 4 in the Strat-
egy section. We assume in this example that the molecule undergoes isotropic rotational diffusion, which can described by a
single correlation function. Upvalue (14) is then implemented as

M /:M[1_, a , b, 0] Conjugate[M[k_, c_, d_, t]1]:=
KroneckerDelta[l,k]KroneckerDeltal[a,c]KroneckerDeltal[b,d]
21+1

Glt]l;

This tells the kernel to associate the pattern on the left hand side with the M symbol and, on encountering a match of the
form E)J?fll;)(())imﬁkg), (1), to replace it with b’kz‘z% g(7). Downvalues (16), declaring BRW integrator linearity, are implemented
as:

BRWIntegrate[A_ + B_] := BRWIntegrate[A] + BRWIntegratel[B];
BRWIntegrate[A_B_] := A BRWIntegrate[B] /; Ac ComplexesV A c Parameters
BRWIntegrate[Power[A , k ] B ] :=

Power [A, k] BRWIntegrate[B] /; ke Integers && (A c ComplexesV A€ Parameters)

The powers of parameters have to be treated separately because the kernel is unaware of the fact that membership of
Complexes and Parameters sets is inherited in the Power operation. The fastest and the most robust way to set up integra-
tion of a combination of e¢'“g(t) terms with different numbers and symbols for @ appears to be:

BRWIntegrate[e™® G[t]] := J[Simplify[-iA/T]1];
BRWIntegrate[G[t]] := J[0];
BRWIntegrate[0] := 0;
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where the first equation sets up downvalue (17) per se, and the other two deal with the special cases of unit exponen-
tial and zero argument, which do not fall, in the pattern matching sense, under the jurisdiction of the first equation.
We proceed by setting up the Hamiltonians as given in Eq. (19) and the double commutator from Eq. (1).
Hst =w,L, +0,S, +aL,.S,;
2 2 2
Han[t_l:=0 Y T2, KIMI2,Kk,-2,t]+ 0 Y T[2,kIMI2,k, 2,61+ 2= 3 T[2,kIMI2,k, 0,1 ;
k=-2 k=-2 k=-2

Dcomm[p_] :=
-Comm[HAn[0] ,Comm[ConjugateTranspose [MatrixExp[i Hst 1] .Hdn[t1] .MatrixExp[-i Hst t1]1,p11;
The rate of relaxation-induced transitions between the two observables corresponding to the two orthogonal operators A
and B is then calculated as

Scal [Dcomm[A], B]
JScallB, Blscalla, A]

Rate[A_, B ] :=

//TrigToExp//ExpandAll//BRWIntegrate//Simplify;

where we have used the fact that the integration and the matrix trace operation commute. This completes the implemen-
tation. Finally we present some illustrative answers:

Rate[L,, L,] // Timing

Ax’ +3Rh’
0.281 Second, - =22 35| 2 |+37|-2-0, [+37] -2+,
1440 2 2 2

+ 3JE+¢01}+12J[—Ql —0,1423 [0, ~0,]+23 [-0, +0,1+123 [0, +w2]]

Rate[L,, S,] // Timing

Ax’ +3Rh’
0.219 Second, 7270(&7[—@1 —0,1-T 0, 0,1~ [-6, +,1+6J [0, +0,])

Rate[L,, L,] // Timing

Ax’ +3Rh’
0.281 Second, - == | 85101+33| 2 -0, [+37| -2 -0, [+37]| 2 -0,
1440 2 2 2

+ 3J{—%—w2:|+3J|:—§+w2}+3J{%+m2}+l2J[—col —0,1+23 [-0, +co2]]

Note that the often overlooked difference between J(w) and J(—w) is material because of the (usually small but non-zero)
dynamic frequency shift component of the spectral density function, which is odd with respect to w. Obtaining the correct
argument signs in the correlation function is crucially important in the ongoing hunt for the experimental observation of relax-
ation-induced dynamic frequency shifts [29]. If we now choose to neglect the DFS and put the scalar coupling constant a to

zero, we obtain the textbook rates for longitudinal relaxation, longitudinal cross-relaxation and transverse relaxation
[31

I [ . Ax’ +3Rh’

L,—>L;: (371014310, - 0,146 [0, +0,)

7 q . Ax’ +3Rh’

l’Z%SZ' —T(J[ml—mz]—6J[ml+m2])

N ~ A%’ +3Rh’

L —L,: ————;55——{4J[0]+3J[mJ+6J[mg+J[ml—mg+6J[m1+mg)

where in the case of isotropic rotational diffusion J(w) = t./(1 + t2»?), and the signs of the resulting rates conform to the
definition of the relaxation superoperator given in Eq. (5).

4.2. Example 2. Cross-correlation between two Zeeman interaction anisotropies
The Hamiltonian of a two-spin system with anisotropic Zeeman interactions contains the constant term H, correspond-

ing to the isotropic part of either the g-factor or the chemical shielding, and the time-dependent term A (¢) resulting from
the rotational modulation of the anisotropies:
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Ho =w Ly + 60232,

~ 2 Rhy . Axy 40 Rh; - Ax, (20)

Ay (Rl 50 ( ( A Ay (Rha g0 2 ()
Hi(1) = RmaRly, <2 ™, + > )+ NG 750 ) + R RS, EN ™, + EN %+ NG T3
where the two sets of axiality and rhombicity parameters refer to the two Zeeman tensors. kpos are ‘positioning’ rotations
that take the Zeeman tensors from their eigenframes to the molecular frame, and Ry, is a global rotation of what is as-
sumed to be a rigid molecule. We will not make any simplifying assumptions about the Zeeman tensors and consider the
full rhombic case. After applying Eq. (11) the anisotropic part transforms into:

2
Hi(t)= Y ML, ([T, + 15,0 (21)
kym==2
in which i}liﬁ(t) are time-dependent Wigner functions corresponding to overall molecular rotation, @,, are defined in Eq.
(11) and T, are the irreducible spherical tensor operators, linking the spin operators and the external magnetic field.
A few more upvalues and assignments have to be made in addition to the ones specified in Example 1. Firstly, the kernel
has to be made aware of Eq. (12):
Conjugate[®L[m_]1] A:= (-1)"¢L[-m] /; me Integers
Conjugate[®S[m_]] *:= (-1)"®S[-m] /; me Integers
Secondly, because we are now dealing with Zeeman interactions, the irreducible spherical tensors (8) will couple spin pro-

jection operators to the external magnetic field. Because the magnetic field is assumed to be directed along the Z-axis of the
laboratory frame (that is, Bx, By, and B, are all zero), most of the terms in the definition (8) vanish:

T[2,-2]=0; T[2,—1]=§L_; T[2,0]=\/§Lz; T[2,1]=—§L+; T[2,2]1=0;

1 2 1
K[2,-2]1=0; K[2,—1]=ES; K[2,0]=\/;Sz; K[2'1]=_ES*; K[2,2]=0;

Defining the Hamiltonians completes the setup:
Hst = o,L_ +0,S_;

2 2
Hdn[t_]:= ) > (M[2,k,m,t] (T[2,k]eLIm]+K[2,k]&S[m]))

k=-2m=-2
The Zeeman—Zeeman cross-correlation is known to affect only zero- and double-quantum coherences [32,33]. For the lon-
gitudinal magnetization and single-quantum coherence we have the usual independent rates [31]:

Rate[L,,L,] // Timing

0.078 Second, —%(J[—@l]+J[®l]) (PL[OF -20L[-1]1OL[1]1+20L[-2]13L[2])

Rate[L,,L,] // Timing
0.047 Second, —%(4J[O]+3J[—ml] ) (BL[OF -20L[-1]0L[1]+20L[-2]3L[2])
Note the impressive timings. In these results the parameters and orientations of the Zeeman tensors in the molecular frame

appear in their most general form, expressed via functions defined in Eq. (11). In this particular case we can use definitions
(10) and explicit expressions for the Wigner functions [26,27] to simplify them further

Ax* + 3RW’
D20 D) + 20,0, = % (22)
where the axiality and rhombicity now refer to the shielding tensor of spin L:
Ax = [20.; — (64 + 03)]BoY, (23)

Rh = (0 — 0,,)Bo?y.

Just as in the Example 1, the spectral density function normalization is chosen so that it is a Fourier transform of a cor-
relation function which equals one at zero time separation. This would yield J () = t./(1 + ©20?) + iwt?/(1 4+ 12?) in the
isotropic tumbling approximation, which differs by a factor of 2/5 from the definition given in Palmer’s treatment [31]. The
factor of 2/5 arises from the Wigner function normalization in Eq. (13) and from the fact that the Fourier transform in Eq.
(1) is one-sided. It clearly does not belong to the spectral density function, so we decided to keep it elsewhere.
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In the case of zero-quantum coherence, where the cross-correlated relaxation is manifested, the expression for the relax-
ation rate is substantially more complex:

1 1
V2 V2

0.219 Second, -%J[O] ((®L[0]-®S[0]1) -2 ((®L[-11-®S[-11)

Rate[——=(2L,.S, +2L .S ),——(2L,.S, +2L .S )] // Timing

X(PL[1]-@S[1])-(QL[-2]-®S[-2]) (PL[2]-®S[2])))

- 21—O(J[—col]+J[col]) (OL[OF -20L[-1]1OL[1]+20L[-2]10L[2])

- %(J[—%]+J[w2]) (@S[0) -20S[-110S[1]1+20S[-2]10S[2]).

In practical calculations, the form above is the most convenient, because the expression for the directional functions @,,, is
compact (see Eqgs. (11) and (22)). It is also the most general form for the fully rhombic case. After performing some cos-
metic simplification, we have:

1 Ax} + 3R 1 A4x3 + 3Rk

20, — 20, — 35 3 V(o) +J(=o1)] = 20 G V(w2) +J ()]
2
2 - a2 el o) s 2 aal o)

If we choose to expand it down to the bare trigonometric functions, it becomes:
1 <Ax% + 3Rh7 Ax; + 3Rh;

(=) +J (1)) + (/(—2) +J () +R0J(0)>

60 2 2
4/3 A 0 B Ax;
4/3 ¢ 0 || 4x,
Ry = (Ax; Axy Rh; Rh ; 24
0 (xl X2 1 2) 0 C 4 D R, ( )
B 0 D 4 Rh,

A= —%(1 +3cos[2f]); B = —2cos[2y|sin’ f; C = —2cos[2q4]sin’ f;
D = 4sin[24] cos[f] sin[2y] — cos[20](3 + cos[2f]) sin[2y)

in which the three Euler angles o, 5, y define the relative orientation of the two Zeeman interaction tensors. The full expres-
sion (24) has not, to our knowledge, been reported in the literature, but its special case (NMR, Lipari—Szabo spectral den-
sities, zero rhombicities, DFS neglected), published by Konrat and Sterk [32] and by Pellecchia et al. [33], is in complete
accordance with the corresponding limit of Eq. (24).

Although it is fairly common to neglect shielding tensor rhombicities (in part because the rhombic expressions used to be
difficult to derive), ab initio calculations and experimental measurements indicate that shielding tensors of m-bonded
carbons and nitrogens can be highly rhombic [34-36], with the difference between gxx and gyy often in excess of 30%
of oiso. For the relaxation rate of the Ny—C o) zero-quantum coherence in a model Gly—Gly dipeptide (shielding tensors
estimated from a B3LYP/6-31G(d,p)//CSGT B3LYP/cc-pV5Z calculation in explicit + PCM water using the Gaussian03
program [37], see Fig. 1), the neglect of rhombicity in Eq. (24) would lead to the underestimation of the resulting relaxation
rate by 30-90%, depending on the magnetic field and the rotational correlation time. Clearly, errors of this magnitude are
unacceptable and the fully rhombic expressions for the relaxation rates should be preferred.

4.3. Example 3. ZFS-induced relaxation in a spin-3/2 system

The problem of spin relaxation induced by transient zero-field splitting (ZFS) arises, for example, in the description of
electron spin dynamics in endofullerenes [38—40]. The spin Hamiltonian of the N@Cgo endofullerene (ground electron term
%S, i.e., spin 3/2, with hyperfine coupling to '*N) in a magnetic field has the following form:

H:wISZ+w2iZ+aSZiZ+§~Z-§, (25)
where w; ; are the Zeeman frequencies, a is a hyperfine coupling constant (non-secular terms neglected) and Z is the ZFS ten-
sor. The mathematical details of its rotation are identically the same as those for dipolar and CSA tensors, except we now have
the same spin on both sides of the interaction matrix. After splitting up the Hamiltonian into the static and the dynamic part,
we obtain:
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Fig. 1. Schematic stereo plot of the calculated absolute Ny and Co) shielding tensors in a Gly—Gly dipeptide. The Gaussian03 [37] log containing
complete calculation details and shielding tensor data is included in the Supplementary Information.

Ho = a)IS'Z + wzzz + aS‘ZiZ,

; RE S~ RE S~ 5 qn AX S e
() == > Ty My (1) +> > T M, (1) +7€ > Tow (1),

m=—2 m=-2 m==2

(26)

where, just as in the case of Eq. (19), ﬁlif,f?k(t) are Wigner functions corresponding to the overall molecular rotation and szm are
second rank irreducible spherical tensors linking spin S to itself, as defined in Eq. (8). The Ax and RA parameters define the
axiality and rhombicity of the ZFS tensor in the same way as in Eq. (19). Nothing changes in the program compared to
Example 1, except the definitions of the Pauli matrices (now spin-3/2 and spin-1) and the fact that the definitions in Eq. (8)
now have the same spin on both sides. After evaluation we get the following general expressions for the longitudinal and
transverse electron relaxation rates:

Ratels,,S,] // Timing
Ax’ +3Rh’

0.328 Second, —T(J[-a—m1]+J[a—m1]+4J[2a—2w1]+4J[—2@1]+J[—m1]+J[ool]

+4J[2w,]+J[-a+w,]1+4J[-2a-20,]+J[a+w,]1+4T[2a+20,]+4T[-2a+2w,]),

Rate[s,,S,] // Timing
Ax” +3Rh’
0.297 Second, ——;s (9J[0]+3J[-a-w,]+3J[a-w,]+2J[2a-2w,]+20[-20,]

+30[-w,]1+20[w,]+20[-a+w,]+2J[-2a-20,]+2J[a+®,]),

which, after setting the scalar coupling parameter a to zero and neglecting the dynamic frequency shifts, simplify to results
reported by Knapp and co-workers [38,39]:

§Z - §Z : -%(sz +3Rh%) (J[0,]1+4J[20,])

S 58,1 —L(ax+3r) (37001453 [0,1+23 [20,1).
+ + 25

The relaxation rates computed along the individual transitions were also found to be in complete agreement with those
reported by Knapp et al. [38,39]. On a contemporary single-processor workstation, the full 144 x 144 symbolic relaxation
superoperator for this system was computed in just under 30 seconds.
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5. Conclusions

We have described here what we believe to be a very
general approach to the symbolic processing of Bloch-Red-
field-Wangsness relaxation theory equations as applied to
the liquid-phase spin dynamics in the mathematically
demanding case of rotationally modulated interactions.
The processing typically takes seconds (on a contemporary
single-processor workstation) and yields relaxation rate
expressions which are completely general with respect to
the spectral density functions and relative orientations
and magnitudes of the interaction tensors, with all cross-
correlations accounted for. The algorithm easily deals with
fully rhombic cases, and is able, with little if any modifica-
tion, to treat a variety of relaxation mechanisms.
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